
 

14. 

CALCULATION OF STIFFNESS AND 
MASS ORTHOGONAL VECTORS 

LDR Vectors are Always More Accurate than Using the 
Exact Eigenvectors in a Mode Superposition Analysis 

14.1 INTRODUCTION 

The major reason to calculate mode shapes (or eigenvectors and eigenvalues) is 
that they are used to uncouple the dynamic equilibrium equations for mode 
superposition and/or response spectra analyses. The main purpose of a dynamic 
response analysis of a structure is to accurately estimate displacements and 
member forces in the real structure. In general, there is no direct relationship 
between the accuracy of the eigenvalues and eigenvectors and the accuracy of 
node point displacements and member forces. 

In the early days of earthquake engineering, the Rayleigh-Ritz method of 
dynamic analysis was used extensively to calculate approximate solutions. With 
the development of high-speed computers, the use of exact eigenvectors replaced 
the use of Ritz vectors as the basis for seismic analysis. It will be illustrated in 
this book that Load-Dependent Ritz, LDR, vectors can be used for the dynamic 
analysis of both linear and nonlinear structures. The new modified Ritz method 
produces more accurate results, with less computational effort, than the use of 
exact eigenvectors. 
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There are several different numerical methods available for the evaluation of the 
eigenvalue problem. However, for large structural systems, only a few methods 
have proven to be both accurate and robust.  

14.2 DETERMINATE SEARCH METHOD 

The equilibrium equation, which governs the undamped free vibration of a 
typical mode, is given by:  

0vK0vMK  = or =] - [ 2
iiii          ω  (14.1) 

Equation 14.1 can be solved directly for the natural frequencies of the structure 
by assuming values for  and factoring the following equation: ωi

LDLK i
T

iii  =  (14.2) 

From Appendix C the determinant of the factored matrix is defined by: 

D - - - - D D = )( NN2211iωDet    (14.3) 

It is possible, by repeated factorization, to develop a plot of the determinant vs. 
, as shown in Figure 14.1. This classical method for evaluating the natural 

frequencies of a structure is called the determinant search method [1]. It should 
be noted that for matrices with small bandwidths the numerical effort to factor 
the matrices is very small. For this class of problem the determinant search 
method, along with inverse iteration, is an effective method of evaluating the 
undamped frequencies and mode shapes for small structural systems. However, 
because of the increase in computer speeds, small problems can be solved by any 
method in a few seconds. Therefore, the determinant search method is no longer 
used in modern dynamic analysis programs.  

λ



EIGEN AND RITZ VECTOR EVALUATION 14-3 
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Figure 14.1 Determinant vs. Frequency for Typical System 

14.3 STURM SEQUENCE CHECK 

Figure 14.1 illustrates a very important property of the sequence of diagonal 
terms of the factored matrix. One notes that for a specified value of , one can 
count the number of negative terms in the diagonal matrix and it is always equal 
to the number of frequencies below that value. Therefore, it can be used to check 
a method of solution that fails to calculate all frequencies below a specified 
value. Also, another important application of the Sturm Sequence Technique is to 
evaluate the number of frequencies within a frequency range. It is only necessary 
to factor the matrix at both the maximum and minimum frequency points, and the 
difference in the number of negative diagonal terms is equal to the number of 
frequencies in the range. This numerical technique is useful in machine vibration 
problems. 

iω

14.4 INVERSE ITERATION 

Equation (14.1) can be written in an iterative solution form as: 

RVLDLVV nnnn  = orM = K (i)(i)T1)-(i1)-(i(i)       λ  (14.4) 
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The computational steps required for the solution of one eigenvalue and eigenvector 
can be summarized as follows: 

1. Factor stiffness matrix into triangularized  form during static load 
solution phase. 

LD LT

2. For the first iteration, assume  to be a vector of random numbers and 
solve for initial vector 

(1)R
n
(1)V . 

3. Iterate with i = 1, 2 . . .  

a. Normalize vector so that V  I = VM (i)
n

T(i)
n

b. Estimate eigenvalue  λ   RV = (i)T(i)
n

(i)
n

c. Check λ  for convergence - if converged, terminate (i)
n

d. i = i + 1  and calculate R  1)-(i1)-(i
n

(i) MV = λ

e. Solve for new vector  R = VLLD (i)(i)
n

T  

f. Repeat Step 3  

It can easily be shown that this method will converge to the smallest unique 
eigenvalue. 

14.5 GRAM-SCHMIDT ORTHOGONALIZATION 

Additional eigenvectors can be calculated using the inverse iteration method if, 
after each iteration cycle, the iteration vector is made orthogonal to all previously 
calculated vectors. To illustrate the method, let us assume that we have an 
approximate vector  that needs to be made orthogonal to the previously 
calculated vector . Or, the new vector can be calculated from: 

V
Vn

V - V = V α

MVT
n

n  (14.5) 

Multiplying Equation (14.3) by , we obtain: 
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0 = VnMV - VMV = MVV T
n

T
n

T
n α  (14.6) 

Therefore, the orthogonality requirement is satisfied if:  

 VMV = VMV T
nT

T
n = α

VMV nn
  (14.7) 

If the orthogonalization step is inserted after Step 3.e in the inverse iteration 
method, additional eigenvalues and vectors can be calculated. 

14.6 BLOCK SUBSPACE ITERATION 

Inverse iteration with one vector may not converge if eigenvalues are identical 
and the eigenvectors are not unique. This case exists for many real three-
dimensional structures, such as buildings with equal stiffness and mass in the 
principle directions. This problem can be avoided by iterating with a block of 
orthogonal vectors [2]. The block subspace iteration algorithm is summarized in 
Table 14.1 and is the method used in the modern versions of the SAP program.  

Experience has indicated that the subspace block size “b” should be set equal to 
the square root of the average bandwidth of the stiffness matrix, but, not less than 
six. The block subspace iteration algorithm is relatively slow; however, it is very 
accurate and robust. In general, after a vector is added to a block, it requires five 
to ten forward reductions and back-substitutions before the iteration vector 
converges to the exact eigenvector. 
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Table 14.1 Subspace Algorithm for the Generation of Eigenvectors 

I. INITIAL CALCULATIONS 

A. Triangularize Stiffness Matrix. 

B. Use random numbers to form a block of “b” vectors . (0)V

(i) VM = X 1)-(i(i)

II. GENERATE  L  EIGENVECTORS BY ITERATION   i = 1,2... 

A. Solve for block of vectors, X  in, K . 

B. Make block of vectors, X , stiffness and mass orthogonal, (i) . Order 

eigenvalues and corresponding vectors in ascending order. 

C. Use Gram-Schmidt method to make  orthogonal to all previously 
calculated vectors and normalized so that . 

D. Perform the following checks and operations: 

1. If first vector in block is not converged, go to Step A with i = i + 1 . 

2. Save Vector φ  on Disk. 

3. If  n  equals  L , terminate iteration. 

4. Compact block of vectors. 

5. Add random number vector to last column of block. 

Return to Step D.1  with n = n + 1 
 

V
(i)

V
(i)

 I = VMV (i)T(i)

n

14.7 SOLUTION OF SINGULAR SYSTEMS 

For a few types of structures, such as aerospace vehicles, it is not possible to use 
inverse or subspace iteration directly to solve for mode shapes and frequencies. 
This is because there is a minimum of six rigid-body modes with zero 
frequencies and the stiffness matrix is singular and cannot be triangularized. To 
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solve this problem, it is only necessary to introduce the following eigenvalue 
shift, or change of variable: 

 (14.8) ρ−λ=λ nn

Hence, the iterative eigenvalue problem can be written as: 

RVLDLVMVK (i)(i)
n

T1)-(i
nn

1)-(i
n

(i)  = or =       λ  (14.9) 

The shifted stiffness matrix is now non-singular and is defined by: 

MKK ρ+=  (14.10) 

The eigenvectors are not modified by the arbitrary shift ρ . The correct 
eigenvalues are calculated from Equation (14.8). 

14.8 GENERATION OF LOAD-DEPENDENT RITZ VECTORS 

The numerical effort required to calculate the exact eigen solution can be 
enormous for a structural system if a large number of modes are required. 
However, many engineers believe that this computational effort is justifiable if 
accurate results are to be obtained. One of the purposes of this section is to 
clearly illustrate that this assumption is not true for the dynamic response 
analyses of all structural systems. 

It is possible to use the exact free-vibration mode shapes to reduce the size of 
both linear and nonlinear problems. However, this is not the best approach for the 
following reasons: 

1. For large structural systems, the solution of the eigenvalue problem for the 
free-vibration mode shapes and frequencies can require a significant amount 
of computational effort. 

2. In the calculation of the free-vibration mode shapes, the spatial distribution 
of the loading is completely disregarded. Therefore, many of the mode 
shapes that are calculated are orthogonal to the loading and do not participate 
in the dynamic response. 
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3. If dynamic loads are applied at massless degrees-of-freedom, the use of all 
the exact mode shapes in a mode superposition analysis will not converge to 
the exact solution. In addition, displacements and stresses near the 
application of the loads can be in significant error. Therefore, there is no 
need to apply the “static correction method” as would be required if exact 
eigenvectors are used for such problems. 

4. It is possible to calculate a set of stiffness and mass orthogonal Ritz vectors, 
with a minimum of computational effort, which will converge to the exact 
solution for any spatial distribution of loading [2]. 

It can be demonstrated that a dynamic analysis based on a unique set of Load 
Dependent Vectors yields a more accurate result than the use of the same number 
of exact mode shapes. The efficiency of this technique has been illustrated by 
solving many problems in structural response and in wave propagation types of 
problems [4]. Several different algorithms for the generation of Load Dependent 
Ritz Vectors have been published since the method was first introduced in 1982 
[3]. Therefore, it is necessary to present in Table 14.2 the latest version of the 
method for multiple load conditions. 

Table 14.2 Algorithm for Generation of Load Dependent Ritz Vectors 

I. INITIAL CALCULATIONS  

A. Triangularize Stiffness Matrix . DLLK T = 

us

s V1

i VMX 1-ii  = 

i

B. Solve for block of “b” static displacement vectors  resulting from 
spatial load patterns F ; or, K . Fu  = s

C. Make block of vectors u , stiffness and mass orthogonal, . 

II. GENERATE BLOCKS OF RITZ VECTORS   i = 2,....N  

A. Solve for block of vectors, X ,   K . 

B. Make block of vectors, X ,stiffness and mass orthogonal, . 

 

Vi
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Table 14.2 Algorithm for Generation of Load Dependent Ritz Vectors 

 

C. Use Modified Gram-Schmidt method (two times) to make   

orthogonal to all previously calculated vectors and normalized so that 
. 

III. MAKE VECTORS STIFFNESS ORTHOGONAL   

A. Solve  Nb  by Nb  eigenvalue problem [    where    
. 

B. Calculate stiffness orthogonal Ritz vectors,  . 
 

  = VZΦ

Vi

  = iT
i IVMV

0 = ] - 2 ZIK Ω
  = TKVVK

14.9 A PHYSICAL EXPLANATION OF THE LDR ALGORITHM 

The physical foundation for the method is the recognition that the dynamic 
response of a structure will be a function of the spatial load distribution. The 
undamped, dynamic equilibrium equations of an elastic structure can be written 
in the following form: 

(t)(t)(t) RKuuM  =  + &&

(t)R

= ttt )()(( GFgfR

F

)(tG

 (14.11) 

In the case of earthquake or wind, the time-dependent loading acting on the 
structure, , Equation (13.1), can be written as:   

∑=
J

)
=j

jj
1

 (14.12) 

Note that the independent load patterns are not a function of time. For constant 
earthquake ground motions at the base of the structure three independent load 
patterns are possible. These load patterns are a function of the directional mass 
distribution of the structure. In case of wind loading, the downwind mean wind 
pressure is one of those vectors. The time functions  can always be 
expanded into a Fourier series of sine and cosine functions. Hence, neglecting 
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damping, a typical dynamic equilibrium equation to be solved is of the following 
form:   

ttt ω=+ sin)()( FKuuM &&

ϖ

MuFKu 2ϖ+=

FKu =0

0MuF ≈1

11 FKu =

1

1−= iiKu

 (14.13) 

Therefore, the exact dynamic response for a typical loading frequency  is of 
the following form: 

 (14.14) 

This equation cannot be solved directly because of the unknown frequency of the 
loading. However, a series of stiffness and mass orthogonal vectors can be 
calculated that will satisfy this equation using a perturbation algorithm. The first 
block of vectors is calculated by neglecting the mass and solving for the static 
response of the structure. Or: 

 (14.15) 

From Equation (14.14) it is apparent that the distribution of the error in the 
solution, due to neglecting the inertia forces, can be approximated by: 

 (14.16) 

Therefore, an additional block of displacement error, or correction, vectors can 
be calculated from: 

 (14.17) 

In calculating u  the additional inertia forces are neglected. Hence, in continuing 
this thought process, it is apparent the following recurrence equation exists: 

Mu  (14.18) 

A large number of blocks of vectors can be generated by Equation (14.18). 
However, to avoid numerical problems, the vectors must be stiffness and mass 
orthogonal after each step. In addition, care should be taken to make sure that all 
vectors are linearly independent. The complete numerical algorithm is 
summarized in Table 14.2. After careful examination of the LDR vectors, one 
can conclude that dynamic analysis is a simple extension of static analysis 
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because the first block of vectors is the static response from all load patterns 
acting on the structure. For the case where loads are applied at only the mass 
degrees-of-freedom, the LDR vectors are always a linear combination of the 
exact eigenvectors. 

It is of interest to note that the recursive equation, used to generate the LDR 
vectors, is similar to the Lanczos algorithm for calculating exact eigenvalues and 
vectors, except that the starting vectors are the static displacements caused by the 
spatial load distributions. Also, there is no iteration involved in the generation of 
Load Dependent Ritz vectors. 

14.10 COMPARISON OF SOLUTIONS USING EIGEN AND RITZ 
VECTORS 

The fixed-end beam shown in Figure 14.1 is subjected to a point load at the 
center of the beam. The load varies in time as a constant unit step function. 

100

10 @ 12 = 240

Modulus of Elasticity = 30,000,000
Moment of Inertia = 100
Mass per Unit Length = 0.1
Damping Ratio = 0.01

All units in Pounds and Inches  

Figure 14.1 Dimensions, Stiffness and Mass for Beam Structure 

The damping ratio for each mode was set at one percent and the maximum 
displacement and moment occur at 0.046 second, as shown in Table 14.3. 

The results clearly indicate the advantages of using load-dependent vectors. One 
notes that the free-vibration modes 2, 4, 6 and 8 are not excited by the loading 
because they are nonsymmetrical. However, the load dependent algorithm 
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generates only the symmetrical modes. In fact, the algorithm will fail for this 
case, if more than five vectors are requested. 

Table 14.3 Results from Dynamic Analyses of Beam Structure 

Free-Vibration Mode Shapes Load-Dependent Ritz Vectors Number of 
Vectors Displacement Moment Displacement Moment 

1 0.004572 
(-2.41) 

4178 
(-22.8) 

0.004726 
(+0.88) 

5907 
(+9.2) 

2 0.004572 
(-2.41) 

4178 
(-22.8) 

0.004591 
(-2.00) 

5563 
(+2.8) 

3 0.004664 
(-0.46) 

4946 
(-8.5) 

0.004689 
(+0.08) 

5603 
(+3.5) 

4 0.004664 
(-0.46) 

4946 
(-8.5) 

0.004688 
(+0.06) 

5507 
(+1.8) 

5 0.004681 
(-0.08) 

5188 
(-4.1) 

0.004685 
(0.00) 

5411 
(0.0) 

7 0.004683 
(-0.04) 

5304 
(-2.0) 

  

9 0.004685 
(0.00) 

5411 
(0.0) 

  

Note: Numbers is parentheses are percentage errors. 

Both methods give good results for the maximum displacement. The results for 
maximum moment, however, indicate that the load-dependent vectors give 
significantly better results and converge from above the exact solution. It is clear 
that free-vibration mode shapes are not necessarily the best vectors to be used in 
mode-superposition dynamic response analysis. Not only is the calculation of the 
exact free-vibration mode shapes computationally expensive, it requires more 
vectors, which increases the number of modal equations to be integrated and 
stored within the computer. 

14.11 CORRECTION FOR HIGHER MODE TRUNCATION 

In the analysis of many types of structures, the response of higher modes can be 
significant. In the use of exact eigenvectors for mode superposition or response 
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spectra analyses, approximate methods of analysis have been developed to 
improve the results. The purpose of those approximate methods is “to account for 
missing mass” or “to add static response” associated with “higher mode 
truncation.” Those methods are used to reduce the number of exact eigenvectors 
to be calculated, which reduces computation time and computer storage 
requirements. 

The use of Load Dependent Ritz, LDR, vectors, on the other hand, does not 
require the use of those approximate methods because the “static response” is 
included in the initial set of vectors. This is illustrated by the time history 
analysis of a simple cantilever structure subjected to earthquake motions shown 
in Figure 14.2. This is a model of a light-weight superstructure built on a massive 
foundation supported on stiff piles that are modeled using a spring. 

C o m p u t e r M o d e l
 

Figure 14.2 Cantilever Structure on Massive Stiff Foundation 

Only eight eigen or Ritz vectors can be used because the model has only eight 
masses. The computed periods, using the exact eigen or Ritz method, are 
summarized in Table 14.4. It is apparent that the eighth mode is associated with 
the vibration of the foundation mass and the period is very short: 0.00517 
seconds. 
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Table 14.4 Periods and Mass Participation Factors 

MODE NUMBER 
PERIOD 

(Seconds) 
MASS PARTICIPATION 

(Percentage) 

1 1.27321 11.706 

2 0.43128 01.660 

3 0.24205 00.613 

4 0.16018 00.310 

5 0.11899 00.208 

6 0.09506 00.100 

7 0.07951 00.046 

8 0.00517 85.375 

The maximum foundation force using different numbers of eigen and LDR 
vectors is summarized in Table 14.5. In addition, the total mass participation 
associated with each analysis is shown. The integration time step is the same as 
the earthquake motion input; therefore, no errors are introduced other than those 
resulting from mode truncation. Five percent damping is used in all cases. 

Table 14.5 Foundation Forces and Total Mass Participation 

FOUNDATION FORCE 
(Kips) 

MASS PARTICIPATION 
(Total Percentage) 

NUMBER 
OF 

VECTORS EIGEN RITZ EIGEN RITZ 
8 1,635 1,635 100.0 100.0 

7   260 1,636   14.6   83.3 

5   259 1,671   14.5   16.2 

3   258 1,756   14.0   14.5 

2   257 3,188   13.4   13.9 

The solution for eight eigen or LDR vectors produces the exact solution for the 
foundation force and 100 percent of the participating mass. For seven 
eigenvectors, the solution for the foundation force is only 16 percent of the exact 
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valuea significant error; whereas, the LDR solution is almost identical to the 
exact foundation force. It is of interest to note that the LDR method 
overestimates the force as the number of vectors is reduceda conservative 
engineering result. 

Also, it is apparent that the mass participation factors associated with the LDR 
solutions are not an accurate estimate the error in the foundation force. In this 
case, 90 percent mass participation is not a requirement if LDR vectors are used. 
If only five LDR vectors are used, the total mass participation factor is only 16.2 
percent; however, the foundation force is over-estimated by 2.2 percent. 

14.12 VERTICAL DIRECTION SEISMIC RESPONSE 

Structural engineers are required for certain types of structures, to calculate the 
vertical dynamic response. During the past several years, many engineers have 
told me that it was necessary to calculate several hundred mode shapes for a large 
structure to obtain the 90 percent mass participation in the vertical direction. In 
all cases, the "exact" free vibration frequencies and mode shapes were used in the 
analysis. 

To illustrate this problem and to propose a solution, a vertical dynamic analysis is 
conducted of the two dimensional frame shown in Figure 14.3. The mass is 
lumped at the 35 locations shown; therefore, the system has 70 possible mode 
shapes.  

Using the exact eigenvalue solution for frequencies and mode shapes, the mass 
participation percentages are summarized in Table 14.6. 

One notes that the lateral and vertical modes are uncoupled for this very simple 
structure. Only two of the first ten modes are in the vertical direction. Hence, the 
total vertical mass participation is only 63.3 percent. 
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      Figure 14.3 Frame Structure Subjected to Vertical Earthquake Motions 

Table 14.6 Mass Participation Percentage Factors for Exact Eigenvalues 

LATERAL MASS 
PARTICIPATION 

VERTICAL MASS 
PARTICIPATION MODE PERIOD 

(Seconds) 
EACH MODE TOTAL EACH MODE TOTAL 

1 1.273 79.957 79.957 0 0 

2 0.421 11.336 91.295 0 0 

3 0.242 4.172 95.467 0 0 

4 0.162 1.436 96.903 0 0 

5 0.158 0.650 97.554 0 0 

6 0.148 0 97.554 60.551 60.551 

7 0.141 0.031 97.584 0 60.551 

8 0.137 0.015 97.584 0 60.551 

9 0.129 0.037 97.639 0 60.551 

10 0.127 0 97.639 2.775 63.326 
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The first 10 Load Dependent Ritz vectors are calculated and the mass 
participation percentages are summarized in Table 14.7. The two starting LDR 
vectors were generated using static loading proportional to the lateral and vertical 
mass distributions. 

Table 14.7 Mass Participation Percentage Factors Using LDR Vectors 

LATERAL MASS 
PARTICIPATION 

VERTICAL MASS 
PARTICIPATION MODE PERIOD 

(Seconds) 
EACH MODE TOTAL EACH MODE TOTAL 

1 1.273 79.957 79.957 0 0 

2 0.421 11.336 91.295 0 0 

3 0.242 4.176 95.471 0 0 

4 0.158 2.388 97.859 0 0 

5 0.149 0 97.859 60.567 60.567 

6 0.123 0 97.859 4.971 65.538 

7 0.104 2.102 99.961 0 65.538 

8 0.103 0 99.961 13.243 78.781 

9 0.064 0 99.961 9.696 88.477 

10 0.041 0 99.961 8.463 96.940 

The ten vectors produced by the LDR method more than satisfy the 90 percent 
code requirement. It would require the calculation of 34 eigenvectors for the 
exact eigenvalue approach to obtain the same mass participation percentage. This 
is just one additional example of why use of the LDR method is superior to the 
use of the exact eigenvectors for seismic loading. 

The reason for the impressive accuracy of the LDR method compared to the 
exact eigenvector method is that only the mode shapes that are excited by the 
seismic loading are calculated.  
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14.13 SUMMARY 

There are three different mathematical methods for the numerical solution of the 
eigenvalue problem. They all have advantages for certain types of problems.  

First, the determinant search method, which is related to finding the roots of a 
polynomial, is a fundamental traditional method. It is not efficient for large 
structural problems. The Sturm sequence property of the diagonal elements of the 
factored matrix can be used to determine the number of frequencies of vibration 
within a specified range. 

Second, the inverse and subspace iteration methods are subsets of a large number of 
power methods. The Stodola method is a power method. However, the use of a 
sweeping matrix to obtain higher modes is not practical because it eliminates the 
sparseness of the matrices. Gram-Schmidt orthogonalization is the most effective 
method to force iteration vectors to converge to higher modes. 

Third, transformation methods are very effective for the calculation of all eigenvalues 
and eigenvectors of small dense matrices. Jacobi, Givens, Householder, Wilkinson 
and Rutishauser are all well-known transformation methods. The author prefers to use 
a modern version of the Jacobi method in the ETABS and SAP programs. It is not the 
fastest; however, we have found it to be accurate and robust. Because it is only used 
for problems equal to the size of the subspace, the computational time for this phase 
of the solution is very small compared to the time required to form the subspace 
eigenvalue problem. The derivation of the Jacobi method is given in Appendix D. 

The use of Load Dependent Ritz vectors is the most efficient approach to solve for 
accurate node displacements and member forces within structures subjected to 
dynamic loads. The lower frequencies obtained from a Ritz vector analysis are always 
very close to the exact free vibration frequencies. If frequencies and mode shapes are 
missed, it is because the dynamic loading does not excite them; therefore, they are of 
no practical value. Another major advantage of using LDR vectors is that it is not 
necessary to be concerned about errors introduced by higher mode truncation of a set 
of exact eigenvectors. 

All LDR mode shapes are linear combinations of the exact eigenvectors; 
therefore, the method always converges to the exact solution. Also, the 
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computational time required to calculate the LDR vectors is significantly less 
than the time required to solve for eigenvectors. 
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