
2.  

EQUILIBRIUM AND COMPATIBILITY 
Equilibrium Is Essential  - Compatibility Is Optional  

2.1 INTRODUCTION 

Equilibrium equations, which set the externally applied loads equal to the sum of 

the internal element forces at all joints, or node points, of a structural system, are 
the most fundamental equations in structural analysis and design.  The exact 
solution for a problem in solid mechanics requires that the differential equations of 
equilibrium for all infinitesimal elements within the solid must be satisfied.   
Equilibrium is a fundamental law of physics and cannot be violated within a "real" 
structural system.   Therefore, it is critical that the mathematical model, which is 
used to simulate the behavior of a real structure, also satisfies these basic 
equilibrium equations. 

It is important to note that within a finite element, which is based on a formal 
displacement formulation, the differential stress-equilibrium equations are not 
always satisfied.  However, inter-element force-equilibrium equations are 
identically satisfied at all node points (joints).  The computer program user, who 
does not understand the approximations used to develop a finite element, can 
obtain results that are in significant error if the element mesh is not sufficiently fine 
in areas of stress concentration [1]. 
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Compatibility requirements should be satisfied; however, if one has a choice 
between satisfying equilibrium or compatibility one should use the equilibrium 
based solution.  For real nonlinear structures, equilibrium is always satisfied in the 
deformed position.  Many real structures do not satisfy compatibility due to creep, 
joint slippage, incremental construction and directional yielding. 

2.2 FUNDAMENTAL EQUILIBRIUM EQUATIONS 

The three-dimensional equilibrium of an infinitesimal element, shown in Figure 
1.1, is given by the following equilibrium equations [2]: 
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The body force, , is per unit of volume in the i-direction and represents 
gravitational forces or pore pressure gradients.  Since the infinitesimal 
element is automatically in rotational equilibrium.  Of course, for this equation to 
be valid for large displacements it must be satisfied in the deformed position and 
all stresses must be defined as force per unit of deformed area. 

β i

jiij ττ =

2.3 STRESS RESULTANTS - FORCES AND MOMENTS 

In structural analysis it is standard practice to write equilibrium equations in terms 

of stress resultants rather than in terms of stresses.  Force stress resultants are 
calculated by the integration of normal or shear stresses acting on a surface.   
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Moment stress resultants are the integration of stresses on a surface times a 
distance from an axis. 

A point load, which is a stress resultant, is by definition an infinite stress times an 
infinitesimal area and is physically impossible on all real structures.   Also, a point 
moment is a mathematical definition and does not have a unique stress field as a 
physical interpretation.  Clearly, the use of forces and moments is fundamental in 
structural analysis and design.  However, a clear understanding of their use in finite 
element analysis is absolutely necessary if stress results are to be physically 
evaluated. 

For a finite size element or joint, a substructure, or a complete structural system the 
following six equilibrium equations must be satisfied: 

0= F        0= F         0 = F zyx ΣΣΣ  

0= M        0= M         0 = M zyx ΣΣΣ  (2.2) 

For two dimensional structures only three of these equations need be satisfied. 

2.4 COMPATIBILITY REQUIREMENTS 

For continuous solids we have defined strains as displacements per unit length.  In 
order to calculate absolute displacements at a point we must integrate the strains 
with respect to a fixed boundary condition.  This integration can be conducted over 
many different paths.   A solution is compatible if the displacement at all points is 
not a function of the path.  Therefore, a displacement compatible solution involves 
the existence of a uniquely defined displacement field. 

In the analysis of a structural system of discrete elements, all elements connected to 
a joint, or node point, must have the same absolute displacement.  If the node 
displacements are given, all element deformations can be calculated from the basic 
equations of geometry.  In a displacement based finite element analysis, node 
displacement compatibility is satisfied.  However, it is not necessary that the 
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displacements along the sides of the elements are compatible if the element passes 
the "patch test".     

A finite element passes the patch test "if a group (or patch) of elements, of arbitrary 
shape, is subjected to node displacements associated with constant strain; and, the 
results of a finite element analysis of the patch of elements yield constant strain".  
In the case of plate bending elements, the application of a constant curvature 
displacement pattern at the nodes must produce constant curvature within a patch 
of elements.  If an element does not pass the patch test it may not converge to the 
exact solution.  Also, in the case of a coarse mesh, elements that do not pass the 
patch test may produce results with significant errors.  

2.5 STRAIN-DISPLACEMENT EQUATIONS 

If the small displacement fields  are specified, assumed or 

calculated, the consistent strains can be calculated directly from the following well-
known strain-displacement equations [2]: 
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2.6 DEFINITION OF ROTATION 

A unique rotation at a point in a real structure does not exist.  A rotation of a 
horizontal line may be different from the rotation of a vertical line.  However, in 
many theoretical books on continuum mechanics the following mathematical 
equations are used to define rotation of the three axes: 
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It is of interest to note that this definition of rotation is the average rotation of two 
normal lines.  It is important to recognize that these definitions are not the same as 
used in beam theory when shearing deformations are included.  When beam 
sections are connected the absolute rotation of the end sections must be equal. 

2.7 EQUATIONS AT MATERIAL INTERFACES 

One can clearly understand the fundamental equilibrium and compatibility 
requirements from an examination of the stresses and strains at the interface 
between two materials.  A typical interface, for a two dimensional continuum, is 
shown in Figure 2.1. By definition, the displacements at the interface are equal.  
Or, ),(),( nsuns ss =u  and ),(),( nsuns nn =u . 
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Figure 2.1.  Material Interface Properties 

Normal equilibrium at the interface requires that the normal stresses are equal.  Or, 

nn σσ =  (2.5a) 

Also, the shear stresses at the interface are equal.  Or, 

nsns ττ =  (2.5b) 

Since the displacement, ss u and u , must be equal and continuous at the interface 

ss εε =  (2.5c) 

Since the material properties, that relate stress to strain, are not equal for the two 
materials it can be concluded that 

ss σσ ≠  (2.5d) 

nn εε ≠  (2.5e) 

nsns γγ ≠  (2.5f) 

For a three dimensional material interface, on a s-t surface, it is apparent that the 
following 12 equilibrium and compatibility equations exist: 
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nn σσ =              nn εε ≠  (2.6a) 

 ss σσ ≠             ss εε =  (2.6b) 

tt σσ ≠              tt εε =  (2.6c) 

nsns ττ =             nsns γγ ≠  (2.6d) 

ntnt ττ =             ntnt γγ ≠  (2.6e) 

stst ττ ≠             stst γγ =  (2.6f) 

These 12 equations cannot be derived because they are fundamental physical laws 
of equilibrium and compatibility.  It is important to note that if a stress is 
continuous the corresponding strain, derivative of the displacement, is 
discontinuous. Also, if a stress is discontinuous the corresponding strain, derivative 
of the displacement, is continuous. 

The continuity of displacements between elements and at material interfaces is 
defined as C0 displacement fields.  Elements with continuities of the derivatives of 
the displacements are defined by C1 continuous elements.  It is apparent that 
elements with C1 displacement compatibility cannot be used at material interfaces. 

2.8 INTERFACE EQUATIONS IN FINITE ELEMENT SYSTEMS 

In the case of a finite element system in which the equilibrium and compatibility 
equations are satisfied only at node points along the interface, the fundamental 
equilibrium equations can be written as  

0=+∑∑ nn FF  (2.7a) 

0=+∑∑ ss FF  (2.7b) 

0=+∑∑ tt FF  (2.7c) 
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Each node on the interface between elements has a unique set of displacements; 
therefore, compatibility at the interface is satisfied at a finite number of points.  As 
the finite element mesh is refined the element stresses and strains approach the 
equilibrium and compatibility requirements given by Equations (2.6).  Therefore, 
each element in the structure may have different material properties.  

2.9 STATICALLY DETERMINATE STRUCTURES 

The internal forces of some structures can be determined directly from the 
equations of equilibrium only.  For example, the truss structure shown in Figure 2.2 
will be analyzed in order to illustrate that the classical "method of joints" is nothing 
more than solving a set of equilibrium equations. 

8’

6’ 6’

Figure 2.2.  Simple Truss Structure 

Positive external node loads and node displacements are shown in Figure 2.3.  
Member forces  and deformations d are positive in tension.  if i
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Figure 2.3 Definition of Positive Joint Forces and Node Displacements 

Equating two external loads, , at each joint to the sum of the internal member 

forces, , (see Appendix B for details) yields the following seven equilibrium 

equations written as one matrix equation: 

jR

if
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 (2.8) 

Or, symbolically   

AfR =  (2.9) 

where  is a load-force transformation matrix and is a function of the geometry of 
the structure only.  For this statically determinate structure we have seven 

A
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unknown element forces and seven joint equilibrium equations; therefore, the 
above set of equations can be solved directly for any number of joint load 
conditions.  If the structure had one additional diagonal member there would be 
eight unknown member forces and a direct solution would not be possible because 
the structure would be statically indeterminate.   The major purpose of this 
example is to express the well-known traditional method of analysis (method of 
joints) in matrix notation. 

2.10 DISPLACEMENT TRANSFORMATION MATRIX 

After the member forces are calculated there are many different traditional methods 
to calculate joint displacements.  Again, in order to illustrate the use of matrix 
notation the member deformations  will be expressed in terms of joint 
displacements u .  Consider a typical truss element shown in Figure 2.4.  

id

j

Lx

x

y

Ly L

Deformed Position

Initial Position

v1

v2

v3 v4

 

Figure 2.4.  Typical Two-Dimension Truss Element 
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 The axial deformation of the element can be expressed as the sum of the axial 
deformations, due to the four displacements at the two ends of the element. The 
total axial deformation, written in matrix form, is 
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Application of Equation (2.10) to all members of the truss, shown in Figure 2.3, 
yields the following matrix equation: 
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Or, symbolically 

uBd =  (2.12) 

The element deformation-displacement transformation matrix, B, is a function of 
the geometry of the structure.  Of greater significance, however, is the fact that the 
matrix B is the transpose of the matrix A defined by the joint equilibrium Equation 
(2.8).  Therefore, given the element deformations within this statically determinate 
truss structure, we can solve Equation (2.11) for the joint displacements.  
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2.11 ELEMENT STIFFNESS AND FLEXIBILITY MATRICES 

The forces in the elements can be expressed in terms of the deformations in the 
elements by the following matrix equations: 

dkf =        or,  (2.13) fkd 1−=

The element stiffness matrix k is diagonal, for this truss structure, where the 

diagonal terms are 
i

ii
ii L

EAk =  and all other terms are zero. The element flexibility 

matrix is the inverse of the stiffness matrix where the diagonal terms are 
ii

i

EA
L

.  It 

is important to note that the element stiffness and flexibility matrices are only a 
function of the mechanical properties of the elements.  

2.12 SOLUTION OF STATICALLY DETERMINATE SYSTEM 

The three fundamental equations of structural analysis for this simple truss 
structure are equilibrium, Equation (2.8), compatibility, Equation (2.11), and force-
deformation, Equation (2.13).   For each load condition R, the solution steps can be 
summarized as follows: 

1. Calculate the element forces from Equation (2.8). 

2. Calculate element deformations from Equation (2.13). 

3. Solve for joint displacements using Equation (2.11). 

All traditional methods of structural analysis use these basic equations.  However, 
prior to the availability of inexpensive digital computers, which can solve over 100 
equations in less than one second, many special techniques were developed to 
minimize the number of hand calculations.  Therefore, at this point in time, there is 
little value to summarize these methods in this book on the static and dynamic 
analysis of structures. 
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2.13 GENERAL SOLUTION OF STRUCTURAL SYSTEMS 

In structural analysis using digital computers, the same equations used in classical 
structural analysis are applied.    The starting point is always joint equilibrium. Or, 

.  From the element force-deformation equation, , the joint 
equilibrium equation can be written as R .  From the compatibility 
equation, , joint equilibrium can be written in terms of joint displacements 
as .  Therefore, the general joint equilibrium can be written as 

fAR =

AR =

dkf =
dkA=

uBd =
uBk

uKR =  (2.14) 

The global stiffness matrix K is given by one of the following matrix equations: 

BkAK = ,  or, ,  or,   (2.15) TAkAK = BkBK T=

It is of interest to note that the equations of equilibrium or the equations of 
compatibility can be used to calculate the global stiffness matrix K. 

The standard approach is to solve Equation (2.14) for the joint displacements and 
then calculate the member forces from 

uBkf = ,   or, f  (2.16) uAk T=

It should be noted that, within a computer program, the sparse matrices 
 are never formed because of their large storage requirements.  The 

symmetric global stiffness matrix K is formed and solved in condensed form.  

KkBA  and ,,

2.14 SUMMARY 

Internal member forces and stresses must be in equilibrium with the applied loads 
and displacements.  All real structures satisfy this fundamental law of physics.  
Hence, our computer models must satisfy the same law. 
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At material interfaces all stresses and strains are not continuous.  Computer 
programs that average node stresses at material interfaces produce plot stress 
contours that are continuous; however, the results will not converge and significant 
errors can be introduced by this approximation. 

Compatibility conditions, which require that all elements attached to a rigid joint 

have the same displacement, are fundamental requirements in structural analysis 
and can be physically understood.  Satisfying displacement compatibility involves 
the use of simple equations of geometry.  However, the compatibility equations 
have many forms and most engineering students and many practicing engineers can 
have difficulty in understanding the displacement compatibility requirement.  Some 
of the reasons we have difficulty in the enforcement of the compatibility equations 
are the following: 

1. The displacements that exist in most linear structural systems are small 

compared to the dimensions of the structure.  Therefore, deflected shape 
drawing must be grossly exaggerated in order to write equations of geometry. 

2. For structural systems that are statically determinate the internal member 
forces and stresses can be calculated exactly without the use of the 
compatibility equations. 

3. Many popular (approximate) methods of analysis exist which do not satisfy the 

displacement compatibility equations.  For example, for rectangular frames 
both the cantilever and portal methods of analysis assume the inflection points 
to exist at a predetermined location within the beams or columns; therefore, the 
displacement compatibility equations are not satisfied. 

4. Many materials, such as soils and fluids, do not satisfy the compatibility 

equations.  Also, locked in construction stresses, creep and slippage within 
joints are real violations of displacement compatibility.  Therefore, 
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approximate methods, which satisfy statics, may produce more realistic results 
for the purpose of design. 

5. In addition, engineering students are not normally required to take a course in 
geometry; whereas, all students take a course in statics.  Hence, there has not 
been an emphasis on the application of the equations of geometry. 

The relaxation of the displacement compatibility requirement has been justified for 

hand calculation in order to minimize computational time. Also, if one must make 
a choice between satisfying the equations of statics or the equations of geometry, in 
general, we should satisfy the equations of statics for the reasons previously stated. 

However, due to the existence of inexpensive powerful computers and efficient 
modern computer programs it is not necessary to approximate the compatibility 
requirements.  For many structures, such approximations can produce significant 
errors in the force distribution in the structure in addition to incorrect 
displacements. 
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