31

[image: image1.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

4.0

1.0

-

3.0

=

X3

X2

X1

4.0

6.0

0.0

0.0

1.0

-

4.0

2.0

-

3.4

0

C A L – S A P

COMPUTER ASSISTED LEARNING

OF

STRUCTURAL ANALYSIS PROCEDURES

[image: image26.emf]t

) (t F

t



t N T

p

 

t N T

p

 

COPYRIGHT (c) 1977-2008

BY

EDWARD L. WILSON

STRUCTURAL ANALYSIS PROGRAMS

1050 LENEVE PLACE

EL CERRITO, CA 94530
Draft Dated June 29, 2008

TABLE OF CONTENTS
1.1
Purpose of Program

1.3
Required User Background

1.4
Program Installation

1.5
The CAL Command Language

1.6
Data Preparation

1.7
Execution of the CAL Program

2.
SUMMARY OF BASIC COMMANDS

RETURN
Return to Interactive Mode from the File input mode
LOAD
Loads an Array from the Input File

ZERO

Create a Zero Array

PRINT
Array is Displayed on Console and Output File

DELETE
Array is Deleted from Storage

DUP

Creates an Identical Array with Different Name

WRITE
Create a Duplicate Copy of an Array on Disk

3.
STANDARD MATRIX OPERATION COMMANDS

ADD

Matrix Addition

SUB

Matrix Subtraction

MULT
Matrix Multiplication

TMULT
Transpose Matrix Multiplication

TRAN
Transpose of a Matrix

SCALE
Multiplication of a Matrix by a Constant

SOLVE
Solution of a set of Equations

INVERT
Matrix Inversion

DUPSM
Duplication of Submatrix

STOSM
Store Submatrix

DUPDG
Duplication of Diagonal

STODG
Store Diagonal

EXAMPLE OF CAL COMMANDS

4.
DIRECT STIFFNESS COMMANDS

4.1
Matrix Formulation of the Slope-Deflection Method

4.2
Summary of The Direct Stiffness Commands

SLOPE
Formation of 4 x 4 Stiffness Matrix

LOADI
Load Integer Array

ADDK
Add Member Stiffness to Total Stiffness

MEMFRC
Calculation of Member Forces

4.3
Example of Slope-Deflection Analysis
4.4
Two-Dimensional Frame Analysis with Axial Deformations –

FRAME Formation of 6 x 6 Stiffness Matrix

4.5
Three-Dimensional Frame and Truss Members FRAME3 Formation of 12 x 12 Stiffness Matrix

5.
COMMANDS FOR DYNAMIC ANALYSIS

5.1
Evaluation of Mode Shapes and Frequencies

EIGEN
Eigensolution with Diagonal Mass Matrix

JACOBI
Eigensolution with Full Mass Matrix

SQREL
Square Root of Each Term in a Matrix

RITZ

Evaluation of Load Dependent Ritz Vectors

NORM
Evaluation of Column Norms

PROD
Evaluation of Product of All Terms

5.2
Dynamic Response by Mode Superposition

DYNA
Dynamic Response of Modal Equations

MAX

Select Maximum Values

PLOT

Prepare printer PLOT of Response

FUNCT
Form Function at Equal Intervals

5.3
Dynamic Response by Direct Step-by-Step Integration STEP
 Newmark-Wilson Integration Method

5.4
Dynamic Analysis in the Frequency Domain

DFT

Convert Time Function to Frequency Domain

IDFT

Transform Frequency Function to Time Function

RADIUS
Creates Frequency Response Function

FSOLVE
Solves Modal Response Equations in Frequency Domain
CHAPTER 1
PURPOSE, DATA PREPARATION AND EXECUTION

1.1. PURPOSE OF PROGRAM

At the present time, a large number of computer programs exist which evaluate the displacements and member forces within complex three-dimensional structures. After the computer model and input data is prepared, the analysis process is completely automated. Therefore, it is now possible for students, professional engineers, and professors to perform structural analysis and design using computer programs without a complete knowledge of the approximations which have been incorporated in the computer program. In addition, many individuals do not assume the responsibility or have the ability to independently verify the results produced by a structural analysis program.

The major reasons for the misuse of computer programs for structural analysis and design is the lack of understanding of the engineering fundamentals of equilibrium, force-deformation requirements, and displacement compatibility equations. Another reason, which contributes to the inappropriate use of computer programs, is that the traditional hand calculation methods of structural analysis are not used within modern computer programs. Therefore, many engineers use structural analysis programs as "black boxes" in which the approximations used within the program are not appreciated. This is particularly true if a program is used for three-dimensional dynamic response analysis.

One possible educational solution to this problem is to require students to write their own programs for structural analysis which are based on the direct stiffness method and on modern three-dimensional numerical methods of dynamic analysis. This would result in an improvement in the students' programming ability; however, this may be accomplished at the expense of a basic understanding of structural behavior.

Since programming knowledge is not essential to the responsible use of a structural analysis program, an alternative approach is to use a special language which was designed to subdivide structural analysis into a sequence of logical steps. The use of such an approach requires that the student understand basic structural theory and behavior without the need to perform a large number of time-consuming hand calculations. This philosophy was the motivation for the development of the CAL series of program.
The basic purpose of the CAL-SAP language is to bridge the gap between traditional methods of teaching structural analysis and the use of automated structural analysis programs. As a result of using CAL-SAP, it is hoped that engineers will understand the theory and approximations which are used in modern structural analysis programs.

Since the program can be easily modified, we use the program as an effective research tool. New numerical algorithms for the static or dynamic analysis of structures can be programmed and tested within a few hours. All floating point calculations are carried out in double-precision 64 bit accuracy.

The program has been used to verify other programs for structural analysis. Simple static and dynamic problems can easily be solved with the CAL-SAP program and their results compared with programs which are being used for the first time.

It should be remembered, however, that the basic purpose of CAL is educational. No attempt has been made to extend the capacity of the program by using sparse matrix methods or to effectively use disk storage. Since CAL-SAP is designed for the solution of small educational and research problems, under 1000 degrees of freedom, it has limited values for the solution of large practical structures. One of the many large capacity programs (Such as SAP-2000 or ETABS), with graphics and design post processors, should be used for this class of problems.

1.2
REQUIRED USER BACKGROUND

Since the program performs basic matrix operations it can be used in upper division courses on structural analysis that uses matrix notation. However, it will not teach non-structural engineers to prepare computer input for large or small structural systems. In my opinion, the most qualified individual to create a computer model for a large, real structure is an experienced engineer that knows structural analysis theory and has a clear understanding of the behavior of structures. This knowledge cannot be automated into any computer program. Unfortunately, many firms delegate the responsibility of the preparation and definition of the computer model to junior engineers or non-engineering personel. The responsibility of a CAL-SAP user is to be able to independently verify that the basic three fundamental equations of mechanics are satisfied.
1.2. PROGRAM INSTALLATION

The CALSAP.EXE executable program is the only file which is required in order to execute all CAL-SAP commands. Copy the CALSAP.Exe program in a folder named CALSAP. In the same folder define or copy the file FileList and the example problems. The Filelist ASCII file contains the name are the example problems and any new problem that the user wants to define.
1.3. DATA PREPARATION

The CAL-SAP computer program is designed to interpret a sequence of commands which are supplied by the user in a "input data file" prepared. The input data file must be prepared, printed or edited by the NOTEPAD or WORDPAD editors. The LIST, DISPLAY and PLOT commands can be executed by selecting the Post Processing mode from the main CAL-SAP menu. The name of the CAL input data file must have the extension TEX.

This version of the program performs matrix analysis, direct stiffness structural analysis and dynamic response analysis. Several other commands exist; however, they have not been documented at this time. Also, I plan to add additional commands and output option in the future as requested by the users.
1.4. THE CAL COMMAND LANGUAGE

Data on a "command line" must be separated by commas, or, one or more blanks. A typical CAL command line has the following form:

COMMAND M1 M2 ‑ ‑ A=a1,a2 ‑ B=? : (Comment)

Where "COMMAND" is a one to 12 character name of the CAL command

"Mi" is a one to four character array name

"ai" is optional data for some commands

The notation "M+" indicates that a new array will be created by the operation. If the array name for new data has previously been used the old array will be eliminated before the operation is executed. The notation "M-" indicates that the array will be modified by the CAL operation.

Typical data, "ai", to be used by the operation can be in either integer or floating point form. In the case of a floating point number, it can have the form of arithmetic statements. For example, 2.5+4*2‑6/2 will be interpreted as ((2.5+4)*2‑6)/2.

A "!" in column one of a command or data line indicates that the line will be a comment line which is used to make the CAL input file more readable. In addition, a ! (after the essential data entered on any line) will allow additional comments to be entered.

1.5. EXECUTION OF THE CAL PROGRAM

After the CAL-SAP Windows program is opened, the program asks the user for the CAL-SAP project "name" of the input data file which contains the batch command. The results of every CAL-SAP solution are saved on the output file name "name.OUT".

After the CAL program is terminated the output file, name.OUT, can be printed or edited by the WORDPAD editor.
CHAPTER 2
BASIC COMMANDS

The group of CAL commands presented in this section controls the flow of execution of the CAL commands. Also, it allows for input, output, duplication or generation of arrays within the computer's memory, RAM, or the transfer of arrays between RAM and low speed disk storage. Note that the "+" sign after an array name indicates that the array is created by the CAL command and the "-" sign after an array name indicates that the CAL command modifies or deletes the data within the array.

RETURN

The RETURN command will terminate the execution of the batch input mode and return the CAL program to the interactive mode. This command can only be given in the batch input file mode.

LIST or L

If the interactive LIST command is executed a list of the name and size of all arrays which are contained in the computer storage is displayed.

LOAD M1+ R=? C=?

The LOAD command will create a matrix named "M1" with "R" rows and "C"columns. The data must immediately follow the LOAD command. The data must be supplied one row per line. The data is separated by commas, or, one or more blanks. A line of data may be continued on the next line by the use of a "\" at the end of the line. If the data for a row is greater than 160 characters the matrix must be loaded by the use of submatrix operations. All input data should be checked with a PRINT command.

ZERO M1+ R=? C=? T=? D=?
The ZERO command will create a R x C matrix named M1. If "T=?" is specified all terms of the matrix will be set to "T". If the matrix is square the diagonal terms will be set to "D".

PRINT or P M1

The PRINT command will cause the matrix "M1" to be displayed on the terminal and written to the "????.OUT" print file, which can be printed by the DOS PRINT command.

DELETE or D M1-

The array named M1 will be deleted and the storage within the computer will be compacted.

DUP M1 M2+

The DUP command forms a new matrix named M2 in which all terms are equal to the terms in matrix M1.

WRITE M1 and READ M1
The WRITE command can be used to save the array named M1 as a binary disk file called "name.M1. Therefore, M1 must not have over a three character name. The read command reads the array on the binary file named "name.M1" into RAM. Since files can be renamed by the DOS command REN, data generated in one CAL problem can be used as input to another CAL problem with a different "name".

CHAPTER 3
STANDARD MATRIX OPERATION COMMANDS
This group of CAL commands is intended to perform standard matrix operations. Note that the TMULT command eliminates, for most problems, the need to perform a matrix transpose. Also, it is always more efficient to solve a set of equations directly without using matrix inversion and multiplication.

ADD M1- M2

This operation replaces the matrix M1 with M1 + M2

SUB M1- M2

The SUB operation replaces the matrix M1 with M1 ‑ M2

MULT M1 M2 M3+

The MULT command creates the matrix M3 which is the product of the matrices M1 and M2. (The number of numerical operations required for matrix multiplication is NxMxL; where, M1 is a N by M matrix and M2 is a M by L matrix.)

TMULT M1 M2 M3
Same as the MULT command except that M1 is stored in transposed form.

TRAN M1 M2+

The TRAN command forms the matrix M2 which is the transpose of the matrix M1.

SCALE M1+ M2

The SCALE command multiplies each term in matrix M1 by M2(1,1).

SOLVE A- B- S=? EQ=?

The SOLVE command operates on the matrix equation AX = B where A is a symmetric matrix and B is specified. The results X are stored in the same location as the B matrix. The following options are possible:

S=0 The matrix A is triangularized and B is replaced by the solution matrix X.

S=1 The matrix A is triangularized only.

S=2 The matrix B is reduced only ‑ A must have been previously triangularized.

S=3 The matrix B is replaced by the solution matrix X by backsubstitution only.

EQ=The number of equations to be reduced ‑ to be used in substructure analysis.

Any nonsingular set of equations can be made symmetric if both sides of the equation are multiplied by the transpose of A.

(The number of numerical operations required to triangularize the N x N matrix

A is N3/6 . The number of operations required for forward reduction is N2L/2 and for backsubstitution is N2L/2 ; where, L is the number of columns in the matrix B.)

INVERT A‑

The symmetric matrix A is replaced by its inverse.

(The number of numerical operations required to invert a symmetric matrix is N3/2)

DUPSM M1 M2+ R=? C=? L=RL,CL

The command DUPSM creates a new matrix M2 with "R" rows and "C" columns. The term M2(1,1) is identical to the term M1(RL,CL).

STOSM M1- M2 L=RL,CL

The command STOSM stores the submatrix M2 in matrix M1. The term M2(1,1) is located at row RL and column CL in matrix M1.

DUPDG M1 M2+

The command DUPDG creates a row matrix M2 from the diagonal terms of matrix M1.

STODG M1- M2

The command STODG stores the row matrix M2 on the diagonal of the matrix M1.

EXAMPLE OF CAL COMMANDS

The set of equations shown below must be solved. Since the SOLVE command only solves symmetrical systems we must use additional operations to make the system symmetrical.

[image: image27.wmf]

seq Equation * Arabic \h1
An input file of the following form must be prepared:

! SOLUTION OF NONSYMMETRIC SET OF EQUATIONS

LOAD A R=3 C=3

0 3.4 2.0

4 ‑1.0 0

0 6 4

PRINT A

LOAD B R=3 C=1

3

‑1

4

PRINT B

TMULT A A ATA

TMULT A B X

SOLVE ATA X

PRINT X ! Print Results

MULT A X ! ERR

SUB ERR B

PRINT ERR ! Each value should be very close to zero

RETURN ! Return to the WINDOWS operating system

If the above data file is called "CALEX" it can be executed by giving the DOS command CAL91. The CAL program will then ask the user for the "name" of the input file and the user will respond by entering CALEX and a carriage return. The above data is then executed by the user entering the CAL RUN command. The results will be on the output file "CALEX.OUT"
The CAL program disk contains the file CALEX; therefore, the user can check the program by executing the above data file.
CHAPTER 4
DIRECT STIFFNESS COMMANDS

The direct stiffness operations allow for the automatic formulation of element stiffness matrices, the direct addition of element stiffness to form the global stiffness matrix and the calculation of member forces in a local member coordinate system. The first step in the use of these commands is for the user to identify all displacement degrees of freedom at the joints of the structural system. These displacements should be numbered U1, U2, ‑ ‑ ‑ ‑UN. The corresponding external joint loads will be R1, R2 ‑ ‑ ‑ ‑ RN. One equilibrium equation must be written in the direction of each unknown displacement. The structural members should also be numbered from 1 to M.

4.1
Matrix Formulation of the Slope-Deflection Method
The classical slope-deflection method, for horizontal beams and vertical columns, is a well-known approach for structural analysis. However, it is identical to the direct stiffness method in which axial deformations are assumed to be zero. Therefore, it will be used to illustrate the basic steps involved in the direct stiffness method.

[image: image2.wmf]
1

Figure 4.1 Positive Definition of Member Forces and Displacements
For the sign convention shown in Figure 4.1 the classical slope‑deflection equations can be written as

[image: image3.wmf]L

)

F

2

+

F

1

(

=

F

4

-

=

F

3

]

L

)

v

4

-

v

3

(

6

+

v

2

4

+

v

1

2

[

L

EI

=

F

]

L

)

v

4

-

v

3

(

6

+

v

2

+

v

1

[

L

EI

=

F

2

2

4

1

The relative displacement between the ends of the member, v3 - v4, has been written in terms of the absolute global displacements. Now, these equations can be written, for a typical member "M", as the following symmetric matrix equation:

[image: image4.wmf]
[image: image5.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

v

v

v

v

L

12

L

12

-

L

6

-

L

6

-

L

12

-

L

12

L

6

L

6

L

6

-

L

6

4

2

L

6

-

L

6

2

4

L

4EI

=

F

F

F

F

4

3

2

1

M

2

2

2

2

M

4

3

2

1

M

4.1
Or symbolically,
[image: image6.wmf]v

K

=

F

M

M

M

; where,
[image: image7.wmf]K

M

 is the 4 x 4 element symmetrical stiffness matrix.

In order to illustrate the direct stiffness method we will consider the rigid frame example structure shown in Figure 4.2. The first step required, in the analysis of a structure by the slope defection method, is to select the independent displacement degrees of freedom

[image: image8]
Figure 4.2 Displacement Degrees Of Freedom For Rigid Frame
The next step, after the degrees of freedom are identified, is to write one equilibrium equation for each degree of freedom. For this structure, the nine equilibrium equations can be written in the following matrix form:

[image: image9.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

F

F

0

0

0

0

F

0

0

+

0

F

F

0

0

0

F

0

0

+

0

0

0

0

F

F

F

0

0

+

F

0

0

F

0

0

0

F

0

+

0

0

F

0

0

0

0

F

0

+

0

F

0

0

F

0

0

F

F

+

0

0

F

0

0

F

0

F

F

=

R

R

R

R

R

R

R

R

R

2

1

-

-

-

-

3

-

-

7

-

2

1

-

-

-

4

-

-

6

-

-

-

-

2

1

4

-

-

5

1

-

-

2

-

-

-

3

-

4

-

-

1

-

-

-

-

4

-

3

-

2

-

-

1

-

-

4

3

2

-

-

2

-

-

1

-

4

3

1

9

8

7

6

5

4

3

2

1

4.2

From matrix Equation (4.2), we can also create a table indicating what member forces contribute to each of the nine global equilibrium equations.

Table 4.1 GLOBAL EQUILIBRIUM EQUATIONS and MEMBER FORCES

	Member
Force
	1
	2
	3
	4
	5
	6
	7

	 F1
	4
	5
	7
	9
	4
	7
	8

	 F2
	7
	8
	-
	6
	5
	8
	9

	 F3
	1
	1
	2
	2
	-
	-
	3

	 F4
	2
	2
	-
	-
	3
	3
	-

Equation (4.2) is nothing more than a simple statement, in matrix form, that the external applied loads equal the sum of the forces acting at the ends of the seven elements. It clearly represents the summary of nine different free body diagrams. It is suggested that the student draw each of these diagrams in order to understand this simple, but extremely important, force equilibrium statement.

These nine equilibrium equations can be directly expressed in terms of joint displacements by the substitution of Equation (4.1) for all seven members. Therefore, the force-displacement relationship for each member is satisfied.

The final step involves the use of the joint displacement compatibility condition. The displacements at the ends of all members connected to a joint must have the same global displacements. For this example, Table 4.2 defines the relationship between the four member displacements for each member and the nine global joint displacement numbers.

Table 4.2
Member Displacements And Global Joint Displacements

	Member
Displacement
	 1
	 2
	 3
	 4
	 5
	 6
	 7

	 v1
	4
	5
	7
	9
	4
	7
	8

	 v2
	7
	8
	-
	6
	5
	8
	9

	 v3
	1
	1
	2
	2
	-
	-
	3

	 v4
	2
	2
	-
	-
	3
	3
	-

It is apparent that the integer arrays, given in Tables 4.1 and 4.2, are identical. The blank positions are reaction points and have zero displacements. The equilibrium equations can be written in the following form:

[image: image10.wmf]u

K

=

u

K

=

u

]

K

+

-

-

-

-

+

K

+

K

 [

=

R

T

M

*

7

*

2

*

1

å

(4.3)
Each element stiffness can be expanded to a 7 x 7 matrix and the total stiffness matrix,
[image: image11.wmf]K

T

, can be formed by direct matrix addition. Or, the total stiffness matrix can be formed directly. This would involve the addition of each term in the 4 x 4 element stiffness matrix,
[image: image12.wmf]K

*

M

, into the correct location in the 7 x 7 total stiffness matrix. The procedure is time-consuming, repetitive, and prone to error if done by hand calculations. For this reason special commands have been added to the CAL program to perform these direct additions of stiffness operations.

4.2SUMMARY OF THE DIRECT STIFFNESS COMMANDS
SLOPE KM E=? I=? L=?

The slope command forms the 4 x 4 member stiffness matrix named KM for a beam or a column. Where "E" equals the modulus of elasticity, "I" equals the moment of inertia and "L" equals the length of the member.

LOADI M1 R=? C=?
The LOADI command allows an integer array named M1 to be loaded which has "R" rows and "C" columns. The integer array given in Table 4.1 or 4.2 can be loaded with this CAL command. The array loaded by the LOADI command can be checked by the CAL PRINT command.

ADDK K KM ID N=?

The element stiffness matrix named "KM" is added to the total stiffness matrix named "K". The row and column numbers where the terms are to be added are obtained from the "N" column of the integer array loaded by the LOADI command. The ADDK command is used for each member to add the element stiffness matrices to the total (global) stiffness matrix.

After the joint loads are defined, the joint equilibrium equations are solved for joint displacements by the SOLVE command. The use of the MEMFRC command for each member allows member forces to be calculated.

MEMFRC T U ID F+ N=?

The member forces are evaluated by the multiplication of the matrix named "T" by the joint displacement matrix named "U" and the results are stored in a matrix named "F". The joint displacements which are to be used in multiplication are obtained from the "N" column of the integer array named "ID". If "T" is the element stiffness matrix the member forces are given according to the global sign convention. If "T" is a special member force‑displacement transformation matrix the member forces will be given in a local member coordinate system.

4.3
Example Of Slope-Deflection Analysis

A complete analysis of the structure shown in Figure 4.1 will now be given. In order to illustrate that the properties of the stiffness matrix are not a function of the loading on the structure let us use the following two different lateral load conditions in the same analysis:

[image: image13.wmf]ú

û

ù

ê

ë

é

0

0

0

0

0

0

0

10

20

0

0

0

0

0

0

0

20

10

-

 =

R

T

 4.2
The CAL input data file is shown in Table 4.3 and is on the CAL program disk under the name SLOPEX. It is suggested that the student run this example problem and PRINT the output file named "SLOPEX.OUT". Shear and bending moment diagrams should be plotted and the overall static of both load conditions should be checked.

Since this problem could have been solved by the traditional slope-deflection method it is extremely important that each step of the direct stiffness method, using matrix notation and the CAL program, be completely understood before other types of elements are used.

Some important points to remember when using the direct stiffness method are:

1.
The positive direction of forces and displacements for both members and joints must be the same.

2.
The basic equations which are written and solved are simple equilibrium equations in which the external loads are set equal to the sum of the forces acting ot the ends of the elements.

3.
The integer "ID" array represents a summary of the equilibrium equations as well as a summary of joint compatibility conditions.

4.
Matrix notation and the CAL ADDK and MEMFRC commands are simple operations which minimize bookkeeping functions.

Table 4.3 Cal Input Data File For Slope-Deflection Example

	! SLOPE-DEFLECTION ANALYSIS EXAMPLE

SLOPE KCU L=100 I=800 E=30000 ! Members 1 And 2

SLOPE KCL L=120 I=80 E=30000 ! Members 3 And 4

SLOPE KB L=180 I=2000 E=30000 ! Member 5, 6 And 7

LOADI ID R=4 C=7 : ! Load Integer (Equilibrium) Array
4 5 7 9 4 7 8

7 8 0 6 5 8 9

1 1 2 2 0 0 3

2 2 0 0 3 3 0

PRINT ID ! CHECK INPUT DATA
ZERO KT R=9 C=9 ! START WITH ZERO TOTAL STIFFNESS MATRIX

ADDK KT KCU ID N=1 ! Add Member 1 Stiffness To Total Stiffness

ADDK KT KCU ID N=2 ! Add Member 2 Stiffness To Total Stiffness

ADDK KT KCL ID N=3 ! Add Member 3 Stiffness To Total Stiffness

ADDK KT KCL ID N=4 ! ADD MEMBER 4 STIFFNESS TO TOTAL STIFFNESS

ADDK KT KB ID N=5 ! ADD MEMBER 5 STIFFNESS TO TOTAL STIFFNESS

ADDK KT KB ID N=6 ! ADD MEMBER 6 STIFFNESS TO TOTAL STIFFNESS

ADDK KT KB ID N=7 ! ADD MEMBER 7 STIFFNESS TO TOTAL STIFFNESS

LOAD R R=9 C=2 ! LOAD TWO LOAD CONDITIONS
10 10

20 -10

0 0

0 0

0 0

0 0

0 0

0 0

0 0

P R : CHECK LOAD DATA

SOLVE KT R : SOLVE FOR GLOBAL DISPLACEMENTS

P R : PRINT DISPLACEMENTS
MEMFRC KCU R ID F N=1 : CALCULATE AND PRINT MEMBER 1 FORCES

P F

MEMFRC KCU R ID F N=2 : CALCULATE AND PRINT MEMBER 2 FORCES

P F

MEMFRC KCL R ID F N=3 : CALCULATE AND PRINT MEMBER 3 FORCES

P F

MEMFRC KCL R ID F N=4 : CALCULATE AND PRINT MEMBER 4 FORCES

P F

MEMFRC KB R ID F N=5 : CALCULATE AND PRINT MEMBER 5 FORCES

P F

MEMFRC KB R ID F N=6 ! Calculate And Print Member 6 Forces
P F

MEMFRC KB R ID F N=7 ! Calculate And Print Member 7 Forces
P F

RETURN ! RETURN To Home Window

4.4
Two-Dimensional Frame Analysis with Axial Deformations
FRAME KM TM [KG] I=? A=? E=? X=Xi,Xj Y=Yi,Yj [P=?]

The FRAME command forms the 6 x 6 element stiffness matrix named "KM" and a 4 x 6 force‑displacement matrix named "TM" for a general two‑dimensional bending member with axial deformations included in the formulation. The properties of the member are given as:

I= the Moment of Inertia of the member,

A= the Axial Area of the member, and

E= the Modulus of Elasticity of the member.

The coordinates of the "i" and "j" ends of the member are defined by Xi,Yi and Xj,Yj respectively. Note that the user is responsible for the definition of the "i" and "j" ends of the member. If P is specified the 6 x 6 geometric stiffness matrix KG is formed.

The element stiffness matrix, "KM", is formed with respect to the positive definition of global forces and displacements as shown below.

[image: image14.wmf]2

Figure 4.3 POSITIVE DEFINITION OF FORCES AND DISPLACEMENTS

The member forces, with respect to the member's local coordinate system, can be evaluated by the use of the MEMFRC operation which multiplies the matrix "TM" by the joint displacements. The positive definition of the member forces in the local coordinate system is shown below. The MEMFRC command will evaluate the local member forces in the order P1 ‑ ‑ P4.

[image: image15.wmf]
3

Figure 4.4 Positive Definition Of Output Forces

4.5 THREE-DIMENSIONAL MEMBERS
The three-dimensional CAL commands TRUSS and FRAME3 illustrate how structural analysis can be further automated. Both of these reference a node coordinate array, Nx3 in size, named "XYZ" which contain the node point coordinates; therefore, only the node point numbers need be used.

TRUSS KM TM A=? E=? N=I,J

The TRUSS command forms the 6 x 6 element stiffness matrix named "KM" and a 1 x 6 force‑displacement matrix named "TM" for a general three‑dimensional member with axial deformations only included in the formulation. The Axial Area of the member is "A". The Modulus of Elasticity of the member is "E".

Node numbers I and J refer to the row numbers in the "XYZ" array. The element stiffness matrix, "KM", is formed with respect to the positive definition of global forces and displacements as shown below.

[image: image16.wmf]
4
Figure 4.5 POSITIVE DEFINITION OF TRUSS FORCES AND DISPLACEMENTS

The member axial force can be evaluated by the use of the MEMFRC operation which multiplies the matrix "TM" by the joint displacements. A positive axial force indicates tension.

FRAME3 KM TM II=I33,I22 A=? JJ=? E=? G=? N=I,J P=P1,P2

The FRAME3 command forms the 12 x 12 element stiffness matrix named "KM" and an 8 x 12 force‑displacement matrix named "TM" for a general three‑dimensional member with axial, bending and torsional deformations included in the formulation. The properties of the member are given as

I33= the Moment of Inertia about the 3‑axis

I22= the Moment of Inertia about the 2‑axis

JJ= the Torsional Moment of Inertia about the 1‑axis

A= the Axial Area of the member

G= the Shear Modulus, and

E= the Modulus of Elasticity of the member.

The coordinates of joint number I, J, P1 and P2 must have been previously loaded in an array named "XYZ".

5

Figure 4.6 TYPICAL THREE DIMENSIONAL FRAME ELEMENT

The element stiffness matrix, "KM", is formed with respect to the positive definition of global forces and displacements as shown below.

[image: image17.wmf]
6

Figure 4.6 Positive Definition Of Forces And Displacements

The member forces, with respect to the member's local coordinate system, can be evaluated by the use of the MEMFRC operation which multiplies the matrix "TM" by the joint displacements. The positive definition of the member forces in the local coordinate system is shown below. The MEMFRC command will evaluate the local member forces in the order P1 ‑ ‑ P8.

[image: image18.wmf]
7

Figure 4.8 POSITIVE FORCES IN LOCAL 1-2-3 SYSTEM

The section properties I22 and I33 of a three‑dimensional frame member must be specified with respect to a 1‑2‑3 local member coordinate system. In addition, member forces, which are produced by the computer program, are defined in reference to this local right-hand coordinate system. Therefore, it is the user's responsibility to define the member 1 – 2 ‑ 3 system in reference to the global x‑y‑z system.

The positive 1‑axis, V1 vector, is defined by a line along the axis of the member from node point "I" to node point "J".

The 2 and 3‑axes can be specified, with the P=P1,P2 option, by any one of the following three methods:

METHOD 1 ‑ GLOBAL PLANES ONLY ‑ P=?,0

xy plane P=1,0 3‑axis is the Z‑axis and V2 = V3 x V1

zx plane P=2,0 3‑axis is the Y‑axis and V2 = V3 x V1

yz plane P=3,0 3‑axis is the X‑axis and V2 = V3 x V1

METHOD 2 ‑ SPECIFICATION OF "Vp" VECTOR ‑ P=P1,P2

The coordinates of node numbers P1 and P2 are specified by the user in the joint coordinate information. The vector Vp is normal to the 2-axis and is defined by the line from node point P1 to node point P2. The 2 and 3‑axes are then calculated as follows:

V2 = Vp x V1 and V3 = V1 x V2

Node points P1 and P2 may be "dummy nodes" which are not connected to members.

METHOD 3 ‑ SPECIFICATION OF "K" NODE ‑ P=0,K

The VK vector is defined by the line from node "I" to node "K". The 3 and 2‑axes are then calculated as follows:

V3 = V1 x VK and V2 = V3 x V1

CHAPTER 4.

COMMANDS FOR DYNAMIC ANALYSIS
In this section several commands are presented which allow CAL-SAP to perform linear dynamic analysis of small structural systems. With the aid of other commands it is possible to solve the following types of dynamic problems:

A.
Evaluation of free‑vibration mode shapes and frequencies.

B.
Automatic generation of Ritz vectors to be used in a mode superposition analysis or response spectra analysis.

C.
Mode superposition analysis due to arbitrary loading.

D.
Step‑by‑step analysis of structural systems with arbitrary viscous damping.

E.
Dynamic analysis in the frequency domain.

All commands assume that the mass and stiffness matrices have been calculated by other CAL commands. The PLOT interactive command can be used to produce time history response plots of results.

5.1 EVALUATION OF MODE SHAPES AND FREQUENCIES
EIGEN K- V+ M-

This command solves the following eigenvalue problem for the mode shapes and frequencies:

KV = MVe

Where "K" is the name of the N x N stiffness matrix K. The command is restricted to a diagonal mass matrix; therefore, the array named "M" must be given as a row or column array of the diagonal terms of the N x N mass matrix M.

The N x N matrix V, which contains all the eigenvectors (mode shapes) stored column wise, is named "V" and is normalized in order that VT M V = I.

The N x N matrix e is a diagonal matrix of eigenvalues w2 (frequencies wi are in radians per sec.2). The EIGEN command stores the eigenvalues ei in place of the mass terms Mi in the array named "M".

The program uses the standard Jacobi method; therefore, both K and M must be symmetric and positive definite matrices.

JACOBI K- V+ M- E+

This command solves the following eigenvalue problem for the mode shapes and frequencies:

KV = MVe

Where "K" is the name of the N x N stiffness matrix K and "M" is the name of the N x N mass matrix. The N x N matrix V, which contains all eigenvectors (mode shapes) stored column-wise, is named "V" and is normalized in order that VT M V = I.

The N x N matrix e is a diagonal matrix of eigenvalues wi2 (frequencies wi are in radians per sec.2). The JACOBI command stores the eigenvalues ei as a N x 1 column matrix named "E". The program uses a modified Jacobi method where both K and M must be symmetric and positive definite matrices.
SQREL M1

The SQREL command replaces each term in matrix M1 with the square root of the term.

INVEL M1

The INVEL command replaces each term in matrix M1 with the inverse of the term.

RITZ K- M F- V+ NV=? S=?

Given a N x N stiffness matrix named "K", a N x 1 mass matrix named "M" and a N x 1 force vector named "F", a N x NV matrix of orthogonal vectors, V, named "V" is generated using a LOAD DEPENDENT algorithm. The matrix V is normalized in order that VT M V = I.

The generated vectors V are not orthogonal with respect to the stiffness matrix K. If "S" is a nonzero number the static vector response is not included in the response.

NORM M1 M2+ T=?

A row matrix M2 is formed in which each column contains the sum of the corresponding column of the matrix M1. If "T" is not equal to zero the square root of the sum of the square is calculated.

PROD M1 D

This command forms a 1 x 2 array named "D" which contains the product of all terms in the array named "M1". The product is stored as two numbers of the form D(1) 10D(2). This command is used to evaluate the determinate of a matrix.
5.2 DYNAMIC RESPONSE BY MODE SUPERPOSITION
DYNAM W C F G(t) X(t)+ DT=? N=?

This command evaluates a set of "I" uncoupled second order differential equations which are generated in the mode superposition analysis of a structural system. The typical equation is of the following form:

Xi + 2 ci wi Xi + w2 Xi = fi g(t) ; i = 1,‑‑‑I

Where

W is a row or column array of the frequencies wi in radians per second.

C is the name of a row or column array of the damping ratios ci.

F is the name of I x 1 column array of the terms fi.

G is the name of a 2 x M array which can be used to define the time function g(t).

X(t) is the name of the I x N array where the results are stored.

DT is the time increment for which the results are produced.

The array G defines a time function in terms of straight line segments where G(1,J) defined the time tj and G(2,J) is the value g(tj). The time function must be defined in the range T = 0 to Tmax, where Tmax = N x DT. Therefore, the maximum value of G(1,M) must be greater than Tmax.

The accuracy of the solution is not a function of the output time increment "DT" since the command produces the exact solution for straight line segments.

MAX X(t) Xmax+

The MAX command locates the maximum absolute value in each row of the array named X(t) and stores the results in a column matrix Xmax. The maximum value and its column number are also printed or displayed.

FUNCT G F(t)+ N=? DT=?
The FUNCT command forms a 1 x N array named F(t). The terms are extracted at "DT" intervals from the time function defined in the array named G. The array G defines a time function in terms of straight line segments where G(1,J) defines the time tj and G(2,J) is the value g(tj). The time function must be defined in the range T = 0 to Tmax, where Tmax = N x DT. Therefore, the maximum value of G(1,M) must be greater than Tmax.

5.3
DYNAMIC RESPONSE DY DIRECT STEP-BY-STEP INTEGRATION
STEP K- M C UVA- U+ P F(t) DT=? L=Li,Lmax P=delta,alpha,theta

This command evaluates the displacements U, at equal time steps, of a structural system where the dynamic equilibrium equations are specified in the following form:

Ma(t) + Cv(t) + Ku(t) = PF(t)

Where a(t), v(t) and u(t) are the time‑dependent acceleration, velocity and displacement vectors respectively. K, M and C are the names of the N x N stiffness matrix, {K}, mass matrix, M, and damping matrix, C respectively.

The loads are specified as the product of a N x 1 matrix P and a 1 x J array {F(t)} named F(t). The loads F(i) are given at equal time steps as specified by "DT".

UVA is the name of a N x 3 array of initial conditions in which

The first column is a vector of initial displacements U(0)

The second column is a vector of initial velocities V(0)

The third column is a vector of initial accelerations A(0)

After STEP is executed this array will contain the displacements, velocities and accelerations at the last time step.

U is the name of the displacements which are stored as an N x Lmax array. The step‑by‑step integration is conducted with a time increment "DT"; however, the displacements are stored at Li time steps (or at "Li x DT" time intervals). Therefore, the number of loads specified "J" must be greater than " Li x Lmax ".

The Newmark‑Wilson step‑by‑step integration method is used where the parameters are specified by delta, alpha and theta. The following table lists possible values:

	Method
	delta
	alpha
	theta

	Newmark's Average Acceleration
	1/2
	1/4
	1.00

	Newmark's Linear Acceleration
	1/2
	1/6
	1.00

	Theta Method ‑ Low Damping
	1/2
	1/6
	1.42

	Theta Method ‑ High Damping
	1/2
	1/6
	2.0

If the P parameters are not specified the linear acceleration method is used.

5.4 DYNAMIC ANALYSIS IN THE FREQUENCY DOMAIN

The CAL operations DFT, IDFT and FSOLVE are provided in order to solve linear dynamic analysis problems in the frequency domain. This approach can be very effective for problems in which the loading is periodic over a very large time span such as machine vibrations or wind and wave loading on structures. It can be used for other types of loading, (i.e. earthquake ground motions), if the period of the loading is selected to be sufficiently long to assure that the response of the structure at the end of each loading period is essentially zero. If the damping of the system is small a very large period may be required if accurate results are to be obtained for loading which is not basically periodic. Following is a summary of these basic CAL operations:

DFT F(m,t)‑ DT=?

The M x N array named F(m,t) contains M different time functions. Each row in the array contains values of the function at equal time intervals
[image: image19.wmf]t

D

. The time functions F(m,t) represent a time span of
[image: image20.wmf]

¥

-

to
[image: image21.wmf]

¥

+

; however, only the values within a typical period
[image: image22.wmf]t

N

D

 are specified as shown below:

Figure 5.1 TYPICAL TIME FUNCTION "m"

The term F(m,1) represents the value of the function "m" at the beginning and end of the basic time period N x DT. The DFT operation expands the time functions in a series of the following form:

[image: image23.wmf])

d

(k

Fs

+

)

d

(k

Fc

+

F

=

F(t)

k

k

0

w

w

Sin

Cos

å

å

3
where k=1,2,‑‑‑‑‑ (N‑1)/2 (for N odd), or, (N‑2)/2 (for N even), and dw = 2π/(N DT). The calculated constants for time function "m" are stored in the mth row in the order F0, Fc1, Fs1, Fc1 ‑ ‑ and replace the original terms in the F(m,t) array. For N even the Nth column will be zero.

IDFT F(m,w)‑
This operation transforms the frequency domain functions back to the time domain. The M x N array named F(m,w), which is in the form generated by the DFT or FSOLVE operations, is replaced by time function values at equal time intervals.

RADIUS F(m,w) R(m,w)+
This command operates on the M x N F(m,w) array and creates a M x L R(m,w) array, where L = (N ‑ 1) / 2. The terms are calculated from the following equations:

[image: image24.wmf])

1

+

F(m,2i

+

)

F(m,2i

=

i)

R(m,

2

2

4

FSOLVE W C F P(w) Y(m,w)+ DT=?
This operation evaluates the solution of a set of uncoupled second order differential equations which are generated in the mode superposition analysis of a structural system for which the loading has been transformed to the frequency domain. W, C, and F are M x 1 arrays and have the same definition as given by the DYNAM operation. The 1 x N array named P(w) is in the same form as produced by the DFT operation and DT is the time step which was used to transform the time domain to the frequency domain.

The mth row in the M x N array named Y(m,w) contains the terms Y0, Yc1, Ys1, yc2 ‑‑‑‑‑ which is the solution of the mth mode written in the following form:

[image: image25.wmf])

d

(k

Ys

+

)

d

(k

Yc

+

Y

=

)

Y(

k

k

0

w

w

w

Sin

Cos

å

å

5
The frequency domain solution Y(m,w) can be transformed to the modal time domain by the IDFT operation ‑ IDFT Y(m,t).

u1

u3

u3

u6

u9

u8

u4

u4

180 in

100 in

120 in

1

2

3

4

5

6

7

u2

u2

u1

�

_1265357028

_1265358044

_1265388444.unknown

_1265388835.unknown

_1265388925.unknown

_1265388749.unknown

_1265360918

_1265357232

_1265357724

_1265357222.unknown

_1265286659

_1265287505

_1265302025

_1265287506

_1265287504

_1265286653

_1265286658

_1265285689

